\qquad Date \qquad Teacher \qquad Period \qquad

Vector Worksheet 3 (with Kinematics Review)

1. An airplane flies north at $150 \mathrm{~km} / \mathrm{h}$. There is a wind blowing at $75 \mathrm{~km} / \mathrm{h}$ to the east. What is the plane's velocity with respect to the ground?

2. A biker rides $5.0 \mathrm{~km}, 30.0^{0}$ North of East. What are the north and east components of this displacement?

$$
\begin{array}{rlrl}
x=5.0 \cos 30^{\circ} & y & =5.0 \mathrm{sic} 30^{\circ} \\
& =4.3 \mathrm{~km} & & =2.5 \mathrm{~km} \\
\mathrm{r} 1 & & +1
\end{array}
$$

3. An airplane flies due north at $185 \mathrm{~km} / \mathrm{h}$. There is a wind blowing at $85 \mathrm{~km} / \mathrm{h}$ to the northeast. What is the plane's velocity with respect to the ground?

$$
\begin{aligned}
y & =85 \sin 45^{\circ} \\
& =60.1 \mathrm{~km} / \mathrm{AR} \text { Na At } \\
x & =85 \cos 45^{\circ} \\
& =60.1^{\mathrm{kN}} / \mathrm{HR}
\end{aligned}
$$

$$
\begin{aligned}
& R^{2}=245.1^{2}+60.1^{2} \\
& R=252.4+1 \\
& T_{\operatorname{AN}}=\left(\frac{60.1}{2451}\right) \\
& \theta=T_{A A^{2}}-1\left(\frac{60.1}{245.1}\right) \\
& \theta=13.8^{\circ} \text { EAST OF Nomen } \\
& 11+1
\end{aligned}
$$

4. A powerboat heads due northwest at $13 \mathrm{~m} / \mathrm{s}$ across a river that flows due north at $5.0 \mathrm{~m} / \mathrm{s}$. What is the velocity (both magnitude and direction) of the motorboat with respect to the shore?

$$
\begin{array}{rlrl}
y & =13 \cos 45^{\circ} \\
& =9.19 \mathrm{~m} / \mathrm{s} & & \\
x & =135=255^{\circ} \\
& =9.19 \mathrm{~m} / \mathrm{s} & & x=9.19 \mathrm{~m} / \mathrm{s} \\
& & R=16.9 \mathrm{~m} / \mathrm{s} \\
& \theta=\operatorname{Tas}^{-1}\left(\frac{14.19}{9.19}\right)=57.14
\end{array}
$$ $14.19^{n / s}+1$ 4

$$
\begin{aligned}
& R=16.9 \mathrm{~m} / \mathrm{s} \\
& 57.1^{\circ} \mathrm{Nof} \mathrm{H} \\
& +1 \mathrm{t}
\end{aligned}
$$

5. A roller coaster starts its ride by going 50.0 m along a straight track. The coaster then travels up a 25.0 meter incline at an angle of 30.0° to the horizontal. It then goes down a 15.0 meter ramp that dips 40° below the horizontal. When the coaster reaches the bottom of the ramp,
what is the displacement from its starting point?

$$
\begin{aligned}
& \frac{\text { Tones }}{x=83.1 \mathrm{~m}} \\
& y=2.86 \mathrm{~m} \text { vp }
\end{aligned}
$$

$$
R^{2}=(2.86 n)^{2}+(83.1)^{2}
$$

$$
=83.15 \mathrm{~m}
$$

$\operatorname{TaNA}=\left(\frac{2.86}{83.1}\right)$

$$
\theta=T_{A_{1}-1}\left(\frac{2.86}{83.1}\right)=1.97^{\circ}
$$

2400 $x=11.5 \mathrm{~m}$ $y=9.64$ sow r
Kinematics Review

83.1 m

1.97° abovE Horezornil
6. A plane lands on a straight runway traveling at a speed of $35 \mathrm{~km} / \mathrm{h}$. What is the plane's acceleration if it comes to rest in 7.00 s?
7. An object thrown straight up into the air reaches a maximum height of 23 m above its initial position. What was the objects initial velocity? What is its position 1.3 seconds into its motion?
8. A drag racer traveling at a speed of $200.0 \mathrm{~km} / \mathrm{h}$ on a straight track ejects its parachute and slows to a speed of $20.0 \mathrm{~km} / \mathrm{h}$ in 12.0 seconds. What is the acceleration of the racer? What distance did it travel in the 12.0 s interval?
9. A train on a straight, level track has an initial speed of $45.0 \mathrm{~km} / \mathrm{h}$. A uniform of $1.50 \mathrm{~m} / \mathrm{s}^{2}$ acceleration is applied to the train while it travels a distance of 200.0 meters. What is the final speed of the train? How long does it take the train to reach that speed?

