Circular Motion

1

Uniform Circular Motion

- Definition
 - moving in a circle at a constant speed
- Rotating
 - Moving around an axis located within the object itself (ie. spinning top)
- Revolving
 - Moving around an axis located outside the object (ie. Earth around the sun)

Uniform Circular Motion

- Period (T)
 - the amount of time it takes for an object to make one revolution around the circle
- Frequency (f)
 - The amount of revolutions or cycle each second
 - Notice the relation between Period and frequency

$$f = \frac{1}{T}$$

3

Circular (Tangential) Speed

- Speed of the object moving at a constant rate around a circular path
 - Start with the equation for velocity

$$v = \frac{d}{t}$$

- Then substitute the values for a circle

$$v = \frac{2\pi r}{T}$$

4

Angular Units

For rotating and revolving situations, it is easier to account for the change in the angle and radius rather than the x and y coordinates

Polar Coordinates (r,θ)

Where θ is the angular displacement (in radians) and r is the radius (in meters), or distance from the origin

Note: Radians is a dimensionless unit.

Cartesian Coordinates (x,y)

5

Converting Between Polar and Cartesian

• It is nothing more than a right triangle

$$r = \sqrt{x^2 + y^2}$$

$$\theta = tan^{-1} \left(\frac{y}{x} \right)$$

$$x = r \cos\theta$$

$$y = r \sin \theta$$

6

Describing Circular Motion

- Angular Displacement (θ)
 - The angle <u>in radians</u> that an object rotates or revolves around a center location
- · Relating units
 - -1 revolution = 360° = 2π radians
- Converting
 - Use a "T-Chart" and $180^{\circ} = \pi$ radians
- Example: Convert 23° to radians

$$\frac{23^{\circ}}{180^{\circ}} = 0.401 \text{ radians}$$

7

Describing Circular Motion

- Angular Velocity (ω)
 - how fast an object is spinning or rotating
 - the rate at which the angular displacement changes

$$\omega = \frac{\Delta \theta}{t}$$

Describing Circular Motion

- Angular Velocity (ω)
 - If we look at an object making <u>one complete rotation or revolution</u>, the angular velocity of the object can be found using:

$$\omega = \frac{2\pi}{T} = 2\pi f$$

9

Tangential Velocity and Angular Velocity

• Consider a merry go round:

- · Where do you have the largest angular velocity?
 - · Same at all locations
- Where do you have the largest tangential velocity?
 - · The outer edge of the merry go round

Tangential Velocity and **Angular Velocity**

• Consider a merry go round:

 Based on your previous answers, tangential velocity is related to the distance you are from the center of rotation. This relationship is shown as:

 $v = r\omega$

11