Sound Waves

The Physics of Music

1

Forced Vibrations and Resonance

- Forced Vibrations
 - The forced transfer of a vibration to other media (Ex: guitar)
- Resonance
 - Occurs when the forced vibration matches the natural frequency of an object
- Resonance can produce a standing wave, creating a louder noise or other results...

https://www.youtube.com/watch?v=u\vnw3Mfxkl https://www.youtube.com/watch?v=rRZT7xO5KN4 https://www.youtube.com/watch?v=sH7XSX10QkM

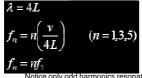
Resonance

- How it works
 - Certain frequencies will produce standing waves in a given length of pipe or string
 - These standing waves produce the sound we hear in musical instruments.
 - By changing the length of the string or pipe, we can change the frequency that resonates
 - Resonant frequency can also depend on the diameter of the pipe

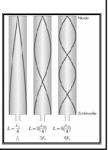
	Air Vibrating in air Holes
,	All holes covered
	(T)
	First five holes covered Higher f
	First three holes covered Still
- 1	le 7 el higher f

Resonance

- Fundamental
 - the lowest frequency making up a sound
- Harmonics
 - whole number multiples of the fundamental frequency
- Overtones
 - The first occurrence of resonance above the fundamental frequency

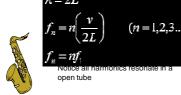

- Note on musical vocabulary:

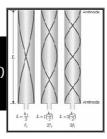
 The fundamental is also the first harmonic


 The first overtone is the second harmonic

Resonance

- Closed pipe resonator
 - resonating tube with one end closed
 - produces a standing wave
 - Minimum length is approx. 1/4 λ




in a closed tube

Resonance

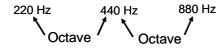
- · Open-pipe resonator
 - open at both ends
 - produces a standing wave
 - Minimum length is 1/2 λ

Harmonics Sample Problem

 What are the first two harmonics (resonant frequencies) in a 2.45 m long pipe that is open at both ends? Assume the speed of sound is 345 m/s.

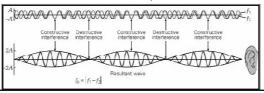
Harmonics Sample Problem

 A 392 Hz tuning fork is used with a closed pipe resonator. The length is 0.32 m when the loudest sound is produced. What is the speed of sound?


Sound Quality

- Timbre or Quality
 - instrument dependent
 - combined frequencies
 - complex wave forms

1					
	`	Funda	ment		
L	\ /	freq	uency	\wedge	
Į	Š	>	\sim	X	
6	\sim	~~	~	W	
Ť	Harr	nonics	(over	lones)	
H	4	_	1	^	
Ш		<u>س</u>	/	N	
1			plex eform		


Pitch - Octaves

- Pythagoras determined musical scales based on the length of string when plucked.
- Octaves
 - difference in pitch when the two notes' frequencies have a ratio of 2:1

Sound Quality

- Beat
 - pulsing variation of loudness
 - Humans can detect beat frequencies up to approximately 7Hz
 - Over 7Hz we hear a complex wave

	_