Projectile Motion

Projectile Motion

- Projectiles
> objects given an initial velocity that then move under the force of gravity
- Trajectory
> the path followed by a projectile
$>$ The path is a curve called a parabola

Horizontal Projectile Graphs

Independence of Dimensions

- Since the horizontal and vertical motion of an object are independent of each other, the motion equations can be used to determine the exact position of a projectile.
Time is the only the variable that links the two dimensions.
- However, we must first distinguish between the x and y components of any vectors.

Independence of Dimensions

- With no acceleration in the horizontal direction, we can find the horizontal position by using the equation:

$$
\text { equation: } \quad x=x_{0}^{\prime}+v_{0} t+y_{2} A_{x} c^{7} l_{0} \mid x=v_{0, x} t
$$

- The velocity in the horizontal direction will not change, therefore:

$$
\begin{aligned}
> & V=V_{0 x}+x \\
V & =V_{0 x}
\end{aligned}
$$

Independence of Dimensions

- Since there is acceleration (gravity) in the vertical direction the position can be found using the equation:

$$
>
$$

- The accelération kăusessat change in velocity in the vertical direction. We can find the final velocity using the equations:

$$
\begin{array}{ll}
> & V_{y}=V_{0 y}+A_{y} t \\
& V_{y}^{2}=V_{0 y}^{2}+Z A\left(Y-Y_{0}\right)
\end{array}
$$

Horizontal Projectile Problem

- A stone is thrown horizontally at a speed of $15 \mathrm{~m} / \mathrm{s}$ from the top of a cliff 78.4 m high.
$>$ How long is the stone in the air?
> How far from the cliff does the stone land?
$>$ What is the horizontal and vertical components of the velocity just before the stone hits the ground?

Horizontal Projectile Problem

	Find X	60
X_{0}	0	78.4
V	15	
V_{0}	15	0
A	0	$-9.8 \% / s^{2}$
t	4	4

$$
\begin{aligned}
& \begin{array}{l}
y=y_{0}+v_{0}, t+1 / 2 A_{y} t^{2} \\
0=78.4+8 t^{+}+y_{2}(-9.8) t^{2} \\
-78.4 \\
16 \\
16 \\
=-4.9 t^{2} \\
4
\end{array} \quad \begin{array}{l}
y=78.4 \mathrm{~m}
\end{array} \\
& \hline
\end{aligned}
$$

Pfeffrember time is the same for both vertical and
horizontal motion

Horizontal Projectile Problem

- Find the horizontal distance

$$
\begin{aligned}
x & =v_{0} t \\
& =15(4)=60 \mathrm{~m}
\end{aligned}
$$

- Find the components of the final velocity $V_{x}=15$

$$
V_{y}=V_{0 y}+A_{y} t=0+-9.8(4)=-39.2
$$

Horizontal Projectile Problem \#2

- You are at the top of a 3.5 m high stair case. A friend at the bottom of the stairs forgot her pencil and asks you for one. You notice that she is 8.5 m horizontally away from you. What horizontal velocity should you throw the pencil at to ensure that she gets the pencil?

Projectiles Launched at an Angle

- When projectiles are launched at angle, they are given an initial horizontal and vertical velocity.
- The horizontal distance the projectile travels is called the range.

Velocity Vectors

- How do the velocities in each direction change over time?

Projectile at an Angle Graphs

Angled Launch Problem

- A ball is thrown with a initial velocity of $5.5 \mathrm{~m} / \mathrm{s}$ at an angle of 54°. Find:
$>$ the time in the air.
$>$ how high the ball went.
$>$ the range when it reaches it's launch height.

Angled Launch Problem

- Find components

$$
\begin{aligned}
V_{0 x} & =5.5 \cos 54^{\circ} \\
& =3.23 \mathrm{~m}_{\mathrm{s}} \\
V_{\text {oy }} & =5.5 \mathrm{sin} 54^{\circ} \\
& =4.45 \mathrm{~ms}
\end{aligned}
$$

Angled Launch Problem

- Find time

- Remember time is the same for both vertical and horizontal motion
- If the final vertical displacement is not zero, then use the quadratic formula

17

Angled Launch Problem

- Find Max height

$$
\begin{aligned}
& A_{T} \varphi_{\text {max }}, V_{y}=0 \\
& V_{y}^{2}=V_{0 y}^{2}+2 A\left(Y_{\text {max }}-Y_{0}\right) \\
& 0^{2}=4.45^{2}+2(-9.8)\left(Y_{\text {max }}-0\right) \\
& -19.8=-19.6 \varphi_{\text {max }} \\
& Y_{\text {max }}=1.01_{\text {m }}
\end{aligned}
$$

Angled Launch Problem

- Find range

$$
\begin{aligned}
x & =x_{0}+v_{0 x} t+1 / 2 A_{x} t^{2} \\
& =0+3.23(.91)+y_{2}(0)(f 11)^{2} \\
x & =2.94 \mathrm{~m}
\end{aligned}
$$

Projectiles Launched at an Angle

- It can be proven using trigonometric identities that the range of the projectile can be found using:

Note: This can only be used when the projectile is launched and lands at the same height. ($\Delta \mathrm{y}=0$)

Angled Launch Problem \#2

- A ball is thrown with a initial velocity of $4.6 \mathrm{~m} / \mathrm{s}$ at an angle of 33° from a office window 14.2 meters high.
Find:
$>$ the time in the air.
> how high the ball went.
$>$ the distance away from the building where the ball will hit.

Angled Launch Problem \#2

- What is the total velocity at the max height, launch height, and just before it hits the ground?

