

| F | O | r | C | e |
|---|---|---|---|---|
|   |   |   |   |   |

- Any push or pull on an object caused by physical contact or force field
- The cause of an acceleration or change in an object's motion
- A vector quantity
- SI unit: Newton (N)
- 1 N accelerates 1kg at 1 m/s<sup>2</sup>
- 1 N = .225 lb

# Types of Forces

- Contact Forces
- At a Distance (Field) Forces

## Weight

- Force of gravity on a mass
- Always directed downward
- $F_g = mg$
- Units
  - Newtons (N)
  - pounds(lbs)
- Conversions
  - -2.2 lbs in 1kg (on earth)
  - -4.45 N in 1 lb

#### Newton's First Law

- · Law states:
  - An object at rest will stay at rest, an object in motion will stay in motion, unless acted on by an outside force.
- Known as the Law of Inertia
  - Inertia is the ability of an object to maintains its current state of motion
  - Inertia is caused by the mass of an object.
    The more mass, the more inertia.

#### **Net Force**

- Definition
  - the "sum" of all forces acting on an object.
- Result
  - an acceleration in the direction of the force.
  - If zero, the object is at rest or moving with a constant velocity.

| 20 N | 16 N |
|------|------|
|      |      |
| •—   |      |

| - |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |

|                 | Net Force      |                   |
|-----------------|----------------|-------------------|
| Accelerating up | Constant speed | Accelerating down |
|                 |                |                   |

#### Atwood's Machine

- Draw all of the forces acting the diagram
- What is the net force on each block?



### Newton's Second Law

- Law states:
  - any net force applied to an object will cause the object to accelerate in the direction of the force.

  - $-F_{net}=ma$  When an object has a constant speed or no speed at all, the net force on the object is zero.

#### **Net Force Problem**

You pull a box along a table with a force of 20 N.
 Assuming the table has a frictional force of 8 N
 which opposes the direction of the box's motion,
 and the box is 9 kg, what is the acceleration of
 the box? What is the box's speed after 2 m?

|   |              |      | •    |    |      |     |     |
|---|--------------|------|------|----|------|-----|-----|
| N | $\Theta^{N}$ | /t∩l | വ′ യ | ır | ۱ırı | n I | Law |
|   |              |      |      |    |      |     |     |

- Law States
  - For every action, there is an equal and opposite reaction.
    - When you push on a wall, do you exert a force? If you do, does the wall move? Why not?
    - Due to gravity, the Earth pulls on you. Using Newton's 3<sup>rd</sup> Law, do you exert a force on the Earth? In which direction? What is the magnitude?