Friction

Friction

- Friction is the force that opposes applied forces.
- Caused by the interaction between the two surfaces in contact
- Two types
 - Static friction
 - Kinetic friction

Static Friction

- Frictional force that keeps the object from beginning to move.
- Always matches the applied force until the applied force is large enough to move the object. $(F_{applied} = F_{f,static})$
- · When the applied force is as great as it can be without moving the object, the force of static friction is at a maximum,

$$F_{f,max static}$$
. $(F_{applied} = F_{f,max static})$

Kinetic Friction

- The frictional force that opposes the motion of a moving object.
- The force of kinetic friction, F_{f.kinetic}, is less than the F_{f,max static}

$$F_{\text{net}} = F_{\text{applied}} - F_{\text{f,kinetic}}$$

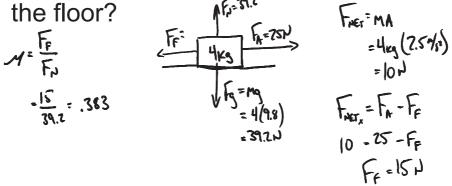
 When an object is moving at a constant velocity, the net force is zero, then F_{applied} = F_{f,kinetic}

What Affects Friction?

- The surfaces themselves (Rubber on Ice vs Rubber on concrete)
- The normal force
- The relationship between surfaces and the normal force is expressed by the coefficient of friction, μ
- Table 4.1 on p.124 has several values

Coefficients of Friction

• The coefficient of static friction, μ_s , is the ratio of the maximum static friction force to the normal force.

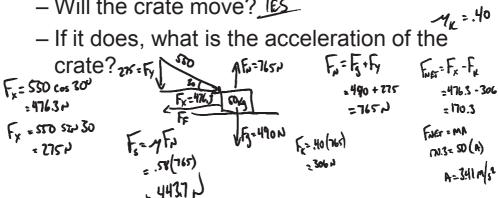

$$\mu_s = \frac{F_{f_s}}{F_N} \quad or \quad F_{f_s} = \mu_s F_N$$

• The coefficient of kinetic friction, μ_k , is the ratio of the kinetic friction force to the normal force.

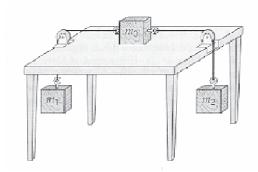
$$\mu_k = \frac{F_{f_k}}{F_N} \quad or \quad F_{f_k} = \mu_k F_N$$

Sample Problem 1

• A force of 25 N is applied to a 4-kg box to move it across the floor with an acceleration of 2.5 m/s². What is the coefficient of friction between the box and the floor?

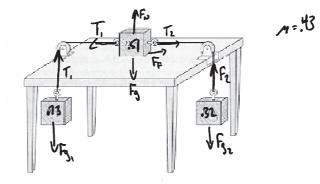


Sample Problem 2


• Jenny pulls her sister on a sled with a force of 124 N at an angle of 32°. The combined mass of her sister and the sled is 46 kg. If they move at a constant velocity, what is the coefficient of friction between the sled and the snow?

Sample Problem 3

- A 50 kg wood crate is pushed across a wooden plank. A 550 N force is applied at an angle of 30° to the horizontal. M= .58
 - Will the crate move?



Sample Problem 4

- μ_k between m₃ and table is 0.43.
- $m_1 = 0.73$ kg, $m_2 = 0.32$ kg, $m_3 = 0.51$ kg
- Find the acceleration of the system.

Sample Problem 4

$$F_{MET_{SYSTEM}} = F_{9}, -F_{8} - F_{9},$$

$$(M_{1}+M_{2}+M_{3}) A = M_{1}9 - 7M_{3}9 - M_{2}9$$

$$(.75 + .32 + .51) A = (.73)(9.3) - (.43)(.51)(9.8) - (.32)(9.3)$$

$$|.56 A = 1.87$$

$$A = 1.20 M_{5}^{2}$$